

BERICHTSENTWURF

Verkehrsuntersuchung Universitätsklinik Homburg

- Neuer Anschluss an die L 213

Auftraggeber/-in:

Landesverwaltungsamt Staatliche Hochbaubehörde Hardenbergstr. 6 66119 Saarbrücken

Auftragnehmer/-in:

PTV Transport Consult GmbH Stumpfstr. 1 76131 Karlsruhe Im Unterauftrag:

VE Kass GmbH Theodor-Heuss-Str. 60-66 51149 Köln

Karlsruhe, 02. September 2024

Dokumentinformationen

Kurztitel	VU Universitätsklinik Homburg (Entwurf)	
Auftraggeber/-in	Landesverwaltungsamt	
Auftrags-Nr.		
Auftragnehmer/-in	PTV Transport Consult GmbH	
PTV-Projekt-Nr.	TC2200299	
Autor/-in	Viviane Wolter, Gunther Kesenheimer	
Erstellungsdatum	26.07.2024	
zuletzt gespeichert	02.09.2024	

Inhalt

1	Ausg	gangssituation und Aufgabenstellung	5
2	Verk	ehrserhebung	6
3	Ermittlung Verkehrsaufkommen		
4	Leist	tungsfähigkeitsnachweise	16
	4.1	Ermittlung Spitzenstundenbelastungen	16
	4.2	Leistungsfähigkeitsbetrachtung	
	4.3	Ausgestaltung Knoten	17
5	Zusa	ammenfassung	19
6	Anha	ang	20
	6.1	Verkehrserhebung	20
		6.1.1 K1 – Zweibrücker Straße (B 423) / Ringstraße	20
		6.1.2 K2 – Zweibrücker Straße (B 423) / Cappelallee	23
		6.1.3 K3 - Ringstraße (L 213) / Kirrberger Straße	26
		6.1.4 K4 - Cappelallee / Warburgring	29
		6.1.5 K5 - Kirrberger Straße (L 213) / Zufahrt Institute	32
	6.2	Verkehrsbelastungen (Spitzenstunden)	35
		6.2.1 Neue Anbindung - Variante 1	35
		6.2.2 Neue Anbindung - Variante 2	36
	6.3	Leistungsfähigkeitsnachweise	37
		6.3.1 Neue Anbindung - L 213 – Variante 1 – Vorfahrtsgeregelter Knotenpunkt	37
		6.3.2 Neue Anbindung - L 213 - Variante 1 - LSA	39
		6.3.3 Neue Anbindung - L 213 - Variante 2 - Vorfahrtsgeregelter Knotenpunkt	41
		6.3.4 Neue Anbindung - L 213 3 - Variante 2 - LSA	43
		6.3.5 Neue Anbindung - L 213 3 – Variante 2 – LSA – Mischfahrstreifen aus dem Uniklinikum	45
		6.3.6. Neue Anhindung - I. 213 – Variante 2 – Kreisverkehr	47

Tabellenverzeichnis

Tabelle 1:	Zählstellen Universitätsklinik Homburg	6
Tabelle 2:	QSV nach dem HBS 2015	_ 16
Tabelle 3:	Übersicht QSV der Varianten und Knotenformen des neuen Knotens L 213	_ 17
Tabelle 4:	Übersicht QSV LSA mit Mischfahrstreifen	_ 17

Abbildungsverzeichnis

Abbildung 1:	Zählstellenplan Universitätsklinik Homburg	7
Abbildung 2:	Verkehrserhebung Ringstraße / Zufahrt Universitätsklinik / L 213 – Kfz/24h	8
Abbildung 3:	Verkehrserhebung B 423 / Cappelallee – Kfz/24h	9
Abbildung 4:	Verkehrserhebung Cappelallee / Warburgring / Zufahrt Universitätsklinik – Kfz/24h	_ 10
Abbildung 5:	Tagesganglinie Universitätsklinik – Zufluss Ringstraße	_ 11
Abbildung 6:	Tagesganglinie Universitätsklinik – Zufluss Cappelallee	_ 11
Abbildung 7:	Tagesganglinie Universitätsklinik – Abfluss Ringstraße	_ 12
Abbildung 8:	Tagesganglinie Universitätsklinik – Abfluss Cappelallee	_ 12
Abbildung 9:	heutiges Verkehrsaufkommen Universitätsklinik	_ 14
Abbildung 10:	Verkehrsaufkommen Universitätsklinik – Variante 1	_ 14
Abbildung 11:	Verkehrsaufkommen Universitätsklinik – Variante 2	_ 15
Abbildung 12:	neuer Knoten L 213 – Aufstelllängen	_ 18
Abbildung 13: ı	neuer Knoten L 213 – Aufstelllängen – Mischfahrstreifen aus dem Uniklinikum	18

1 Ausgangssituation und Aufgabenstellung

Die Stadt erstellt derzeit den Bebauungsplan Universitätskliniken, Teilbereich 3. Darin ist geplant, die Neurologie in einen Neubau im Bereich des ehemaligen Hubschrauberlandeplatzes zu verlegen. Einhergehend mit diesen Planungen wird überlegt, für diesen Neubautrakt eine eigene neue Zufahrt zu bauen. Diese neue Straße soll an die L 213 in Richtung Kirrberg angebunden werden.

Im Entwurf des Erläuterungsberichtes heißt es weiterhin: "In diesem Zusammenhang sollen des Weiteren auch Fragen der zukünftigen gesamträumlichen Entwicklung des Klinikums aufgegriffen und geklärt werden. Aus diesem Grund umfasst das Vorhaben, neben dem Neubau für den Gebäudekomplex 90, weitere flexible Entwicklungsmöglichkeiten für die Klinik. Es soll die Möglichkeit geschaffen werden, langfristig alle klinischen Nutzungen an den neuen Standort zu verlagern sowie die verkehrliche Erschließung in diesem Zusammenhang weiterzuentwickeln."

Die vorliegende Verkehrsuntersuchung soll die zugrunde liegende Ausbauform aufzeigen und die Leistungsfähigkeit dieses neuen Knotens nachweisen.

¹ Kernplan Gesellschaft für Städtebau und Kommunikation mbH – Universitätskliniken, Teilbereich 3 / Bebauungsplan in der Kreisstadt Homburg, Stadtteil Homburg (Entwurf); im Auftrag der Kreisstadt Homburg; Illingen, 14.12.2023

© 2024 PTV Transport Consult GmbH

2 Verkehrserhebung

Zur Ermittlung aktueller Datengrundlagen für die Modellrechnungen wurden im Untersuchungsgebiet begleitende Verkehrserhebungen durchgeführt. Mit den Ergebnissen sollen Angaben über die derzeitigen Straßenbelastungen ermittelt werden.

Die Erhebungen wurden durch das Büro Kass aus Köln durchgeführt, welches sehr große Erfahrung in der Vorbereitung und Durchführung von Verkehrserhebungen besitzt.

Zur Ermittlung der Verkehrsmengen wurden videogestützte Verkehrserhebungen an Knotenpunkten über eine Dauer von 24h durchgeführt. An folgenden Knotenpunkten haben die Verkehrserhebungen stattgefunden (Tabelle 1):

Nummer	Bezeichnung
K1	B 423 / Ringstraße
K2	B 423 / Cappelallee
K3	Ringstraße / Kirrberger Straße (L 213)
K4	Cappelallee / Warburgring
K5	Kirrberger Straße (L 213) / Zufahrt Institute

Tabelle 1: Zählstellen Universitätsklinik Homburg

Die folgende Abbildung zeigt das Erhebungskonzept für die durchzuführende Verkehrserhebung. Es sind sowohl Knotenpunkte an der B 423 als auch Knoten mit Bezug zur Uniklinik enthalten. Der Zählzeitraum über 24 Stunden deckt dabei die Besonderheiten eines Klinikbetriebes ab. Zum einen wird das Verkehrsaufkommen der einzelnen Arbeitsschichten abgedeckt, zum anderen können Besonderheiten wie erhöhtes Verkehrsaufkommen durch Besucherverkehr abgedeckt werden.

Die Verkehrserhebung hat am Dienstag, den 17. Oktober 2023, stattgefunden.

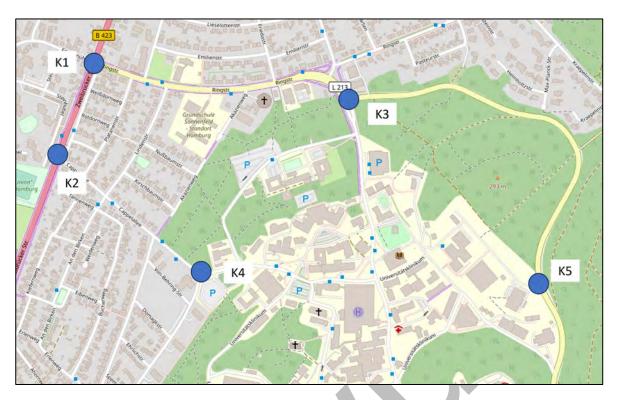


Abbildung 1: Zählstellenplan Universitätsklinik Homburg

Die Intervallzeit der Auswertungen beträgt jeweils 15 Minuten. Die Fahrzeuge wurden differenziert nach den folgenden 7 Fahrzeuggruppen erfasst und ausgewertet:

- Kraftrad
- Pkw und Pkw mit Anhänger
- Lieferwagen
- Lkw ohne Anhänger
- Lkw mit Anhänger
- Sattelzug
- Bus

Ergebnisse:

Die Verkehrserhebung zeigt folgende Ergebnisse:

- Auf der Ringstraße ist ein Verkehrsaufkommen von ca. 15.300 Kfz/24h zu verzeichnen (Abbildung 2).
- Über die Ringstraße bzw. Kirrberger Straße fahren 5.200 Kfz/24h auf das Areal der Universitätsklinik, in der Gegenrichtung wurden hingegen 4.900 Kfz/24h erfasst (Abbildung 2).

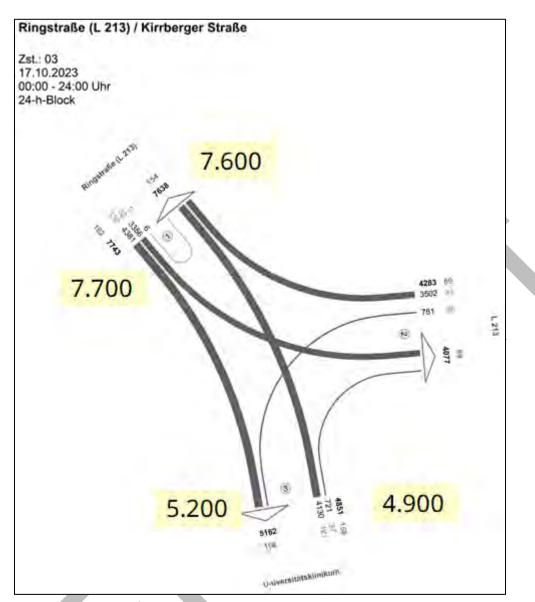


Abbildung 2: Verkehrserhebung Ringstraße / Zufahrt Universitätsklinik / L 213 – Kfz/24h

- In der Cappelallee liegt das Verkehrsaufkommen in Höhe der Einfahrt zur B 423 bei ca. 7.700
 Kfz/24h (Abbildung 3), in Höhe des Warburgrings bei ca. 7.100 Kfz/24h (Abbildung 4).
- Im Bereich des Warburgrings fahren ca. 2.900 Kfz/24 in den Bereich der Universitätsklinik, ca.
 3.200 verlassen die Universitätsklinik (Abbildung 4). Es ist zu erkennen, dass der Verkehr der Universitätsklinik in hohem Maße auf die Cappelallee gerichtet ist.
- Die beiden Zu- bzw. Abfahrten Ringstraße und Cappelallee verzeichnen zusammen ein Verkehrsaufkommen von ca. 16.200 Kfz/24h, wobei davon ca. 62% auf die Ringstraße und ca. 38% auf die Cappelallee entfallen.

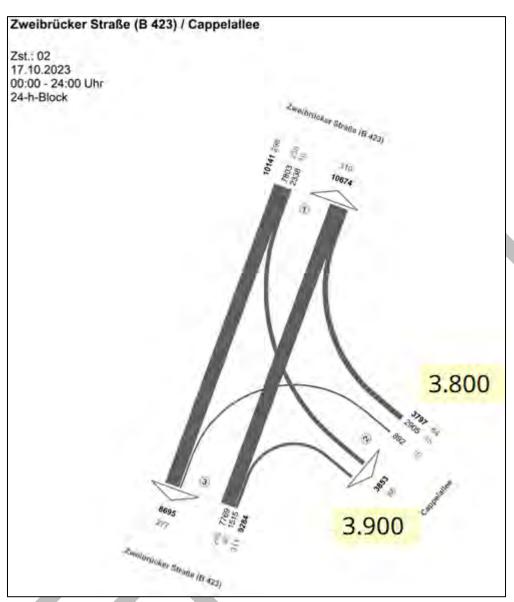


Abbildung 3: Verkehrserhebung B 423 / Cappelallee – Kfz/24h

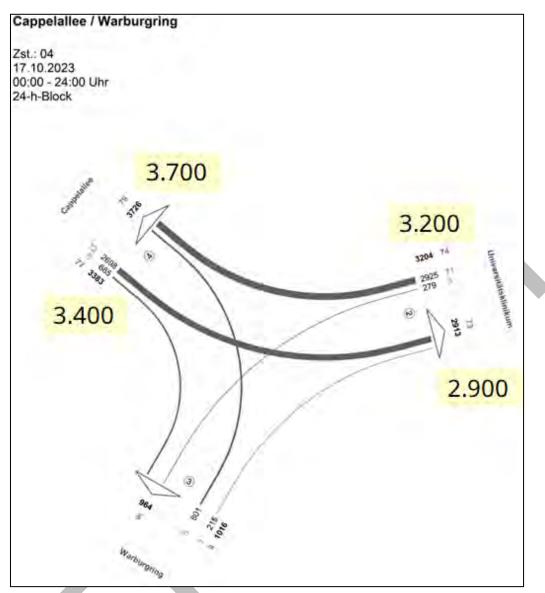


Abbildung 4: Verkehrserhebung Cappelallee / Warburgring / Zufahrt Universitätsklinik – Kfz/24h

- Die Tagesganglinien für die beiden Zufahrtsbereiche der Universitätsklinik zeigen unterschiedliche Ausprägungen: Bei beiden Zufahrten ist der stärkste Zufluss zwischen 6.00 und 9.00 Uhr zu verzeichnen (Abbildung 5 und Abbildung 6). Während die Ringstraße im weiteren Tagesverlauf immer noch ein hohes Verkehrsaufkommen aufweist, ist bei der Zufahrt Cappelallee ein deutlich niedrigeres Aufkommen zu verzeichnen.
- Auch im Abfluss ergibt sich ein unterschiedliches Bild. Während die Cappelallee eine eindeutige Ausprägung der Nachmittagsstunden aufweist, liegt in der Ringstraße auch in anderen Tagesbereichen ein höheres Verkehrsaufkommen vor (Abbildung 7 und Abbildung 8).

Die gesamten Ergebnisse der Erhebung sind im Anhang in Kapitel 6.1 enthalten.

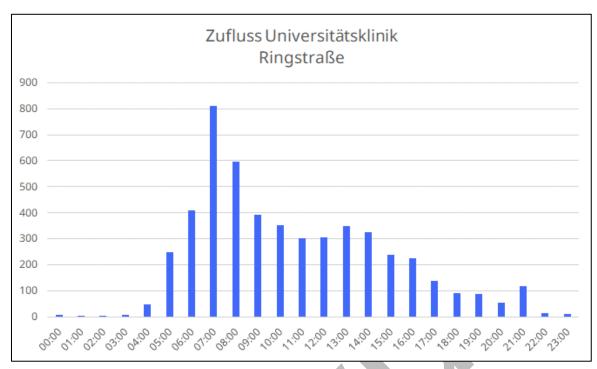


Abbildung 5: Tagesganglinie Universitätsklinik - Zufluss Ringstraße

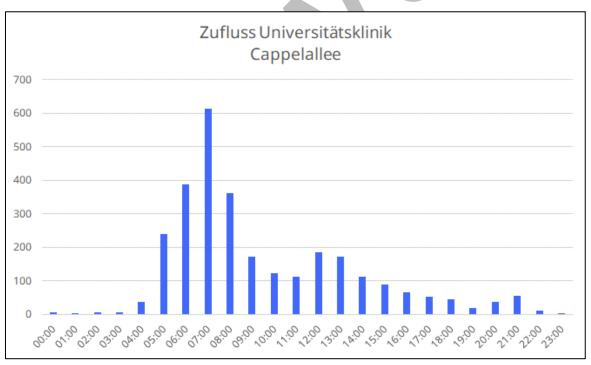


Abbildung 6: Tagesganglinie Universitätsklinik – Zufluss Cappelallee

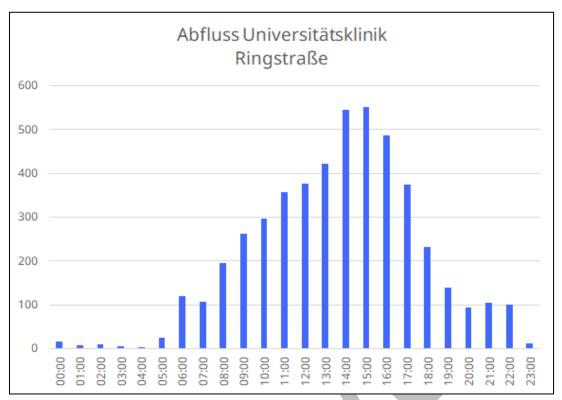


Abbildung 7: Tagesganglinie Universitätsklinik - Abfluss Ringstraße

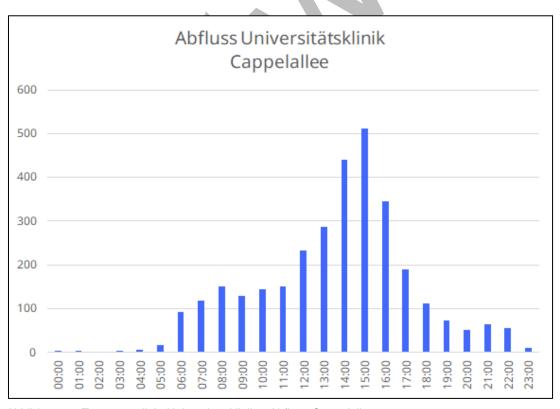


Abbildung 8: Tagesganglinie Universitätsklinik – Abfluss Cappelallee

3 Ermittlung Verkehrsaufkommen

Bei der Ermittlung des relevanten Verkehrsaufkommens am neuen Knoten der L 213 wird von folgenden Annahmen ausgegangen. Der "Klinik-Verkehr" soll komplett über die neue Zufahrt an der L 213 abgewickelt werden, während der "Universitäts-Verkehr" wie bislang die Ringstraße und die Cappelallee nutzt.

Eine differenzierte Unterscheidung des heutigen Verkehrsaufkommens in "Universitäts-Verkehr" und "Klinik-Verkehr" Verkehr ist aufgrund der durchgeführten mengenmäßigen Erfassung nicht möglich. Für die weitere Betrachtung werden deshalb Annahmen hinsichtlich der Aufteilung getrofen. Dabei werden zwei Varianten basierend auf der heutigen Situation betrachtet: Zum einen wird eine Aufteilung 20 % "Universitäts-Verkehr" und 80 % "Klinik-Verkehr" untersucht, zum anderen eine Aufteilung von 30 % "Universitäts-Verkehr" und 70 % "Klinik-Verkehr".

Heutige Situation:

- Cappelallee: Zufluss 2.913 Kfz/24h; Abfluss 3.206 Kfz/24h
- Ringstraße: Zufluss 5.162 Kfz/24h; Abfluss 4.851 Kfz/24h
- Institute: Zufluss 291 Kfz/24h; Abfluss 298 Kfz/24h

Variante 1 - Aufteilung 20 zu 80:

- Cappelallee: Zufluss 583 Kfz/24h; Abfluss 641 Kfz/24h
- Ringstraße: Zufluss 1.032 Kfz/24h; Abfluss 970 Kfz/24h
- L 213: Zufluss 6.460 Kfz/24h; Abfluss 6.446 Kfz/24h
- Institute: Zufluss 291 Kfz/24h; Abfluss 298 Kfz/24h (keine Veränderung)

Variante 2 - Aufteilung 30 zu 70:

- Cappelallee: Zufluss 962 Kfz/24h; Abfluss 874 Kfz/24h
- Ringstraße: Zufluss 1.549 Kfz/24h; Abfluss 1.455 Kfz/24h
- L 213: Zufluss 5.653 Kfz/24h; Abfluss 5.640 Kfz/24h
- Institute: Zufluss 291 Kfz/24h; Abfluss 298 Kfz/24h (keine Veränderung)

In Abbildung 9 ist das heutige Verkehrsaufkommen der Universitätsklinik Homburg. In Abbildung 10 und Abbildung 11 sind die Belastungen von Variante 1 und Variante 2 enthalten.

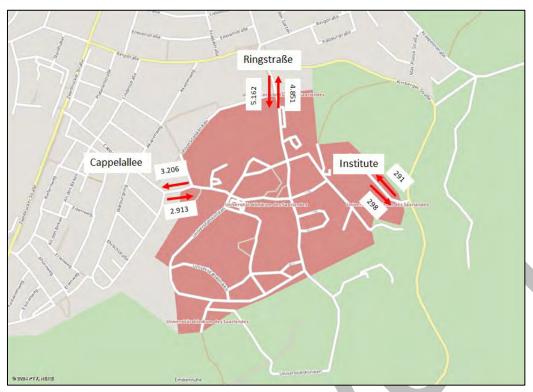


Abbildung 9: heutiges Verkehrsaufkommen Universitätsklinik

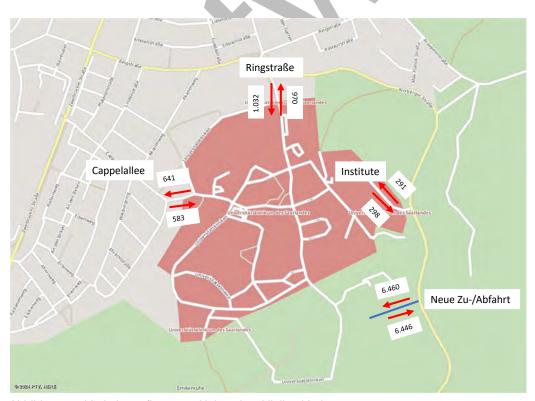


Abbildung 10: Verkehrsaufkommen Universitätsklinik – Variante 1

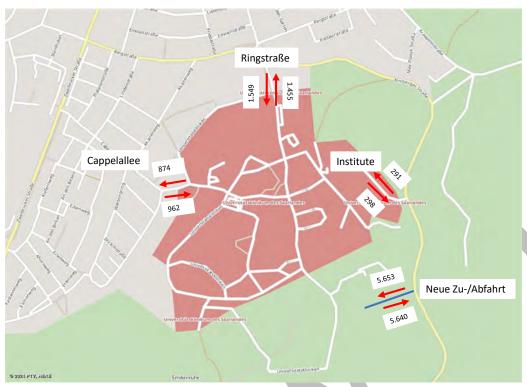


Abbildung 11: Verkehrsaufkommen Universitätsklinik – Variante 2

4 Leistungsfähigkeitsnachweise

4.1 Ermittlung Spitzenstundenbelastungen

Die Spitzenstundenbelastungen werden durch Überlagerung des Verkehrsaufkommens im Bereich der Cappelallee und der Ringstraße ermittelt. Entsprechend der Ansätze in Kapitel 3 erfolgt eine Aufteilung auf die beiden Zu- bzw. Abfahrten (Ringstraße, L 213).

Die Spitzenstundenbelastungen sind im Anhang in Kapitel 6.2 dargestellt.

4.2 Leistungsfähigkeitsbetrachtung

Die Leistungsfähigkeit des neuen Anschlussknotens an die L 213 wird nach dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS, 2015) berechnet. Die Qualitätsstufen des Verkehrsablaufs (QSV) lassen sich auf einer Skala von A bis F bewerten. Ziel ist es gemäß dem HBS, in den Spitzenstunden mindestens die QSV D zu erreichen, die QSV E und F stellen Überlastungen bzw. einen Zusammenbruch des Verkehrs dar. Für die Gesamtbewertung eines Knotenpunkts ist stets die schlechteste Qualitätsstufe der Einzelströme maßgebend. In der folgenden Tabelle sind die Die Qualitätsstufen des Verkehrsablaufs (QSV) aufgeführt.

Qualitätsstufe	Beschreibung nach dem HBS	
QSV A	Die Wartezeiten sind sehr gering.	
QSV B	Die Wartezeiten sind gering.	
QSV C	Die Wartezeiten sind spürbar.	
QSV D	Die Wartezeiten können vorübergehend hohe Werte annehmen. Der Verkehrszustand ist noch stabil.	
QSV E	Die Wartezeiten nehmen sehr große und dabei stark streuende Werte an. Die Kapazität wird erreicht.	
QSV F	Die Wartezeiten sind besonders hoch. Der Knotenpunkt ist überlastet.	

Tabelle 2: QSV nach dem HBS 2015

Die Betrachtung der Leistungsfähigkeit des neuen Knotenpunktes erfolgt für die zwei Varianten mit verschiedenen Knotenpunktformen jeweils für die morgendliche (MSP) und abendliche (ASP) Spitzenstunde. Die Übersicht der Ergebnisse ist in Tabelle 3 dargestellt.

Variante	Knotenpunktform	QSV MSP	QSV ASP
1	Vorfahrtsgeregelter Knotenpunkt	F	F
1	LSA	Е	F
2	Vorfahrtsgeregelter Knotenpunkt	F	F
2	LSA (optimiert)	В	С

Variante	Knotenpunktform	QSV MSP	QSV ASP
2	Kreisverkehr	F	D

Tabelle 3: Übersicht QSV der Varianten und Knotenformen des neuen Knotens L 213

Die Betrachtung der Variante 1 mit der höheren Verkehrsmenge zeigt, dass der Knotenpunkt als vorfahrtsgeregelter Knotenpunkt in der morgendlichen und abendlichen Spitzenstunde nicht leistungsfähig ist. Auch die Untersuchung des Knotenpunktes mit einer Lichtsignalanlage (LSA) ergibt, dass der Knoten in der morgendlichen und abendlichen Spitzenstunde nicht leistungsfähig ist.

In der Variante 2 ist der Knotenpunkt als vorfahrtsgeregelter Knotenpunkt ebenfalls nicht leistungsfähig. Unter der Zuschaltung einer LSA erreichen die QSV des Knotenpunktes in der Morgenspitze die QSV B und in der Abendspitze die QSV C. Bei der Betrachtung des Knotenpunktes als Kreisverkehr ergibt sich in der Morgenspitze die QSV F und in der Abendspitze die QSV D. Der Knotenpunkt ist demnach mit der Geometrie der vorhandenen Straße ausschließlich in der Variante 2 mit einer LSA leistungsfähig.

Iterationsschritt

In der weiteren Bearbeitung durch_das Planungsteam Jakobs Gänssle GmbH hat sich herausgestellt, dass sich die empfohlene Spuraufteilung an der neuen Zu- bzw. Abfahrt am neuen Knoten nur mit sehr großem Aufwand realisieren lässt. Stattdessen wird auf diesem Abschnitt ein Mischfahrstreifen vorgesehen.

Die Leistungsfähigkeitsberechnung zeigt, dass diese Lösung zwar nicht so leistungsfähig wie die Lösung mit zwei separaten Abbiegespuren, sie ist dennoch leistungsfähig. Die Morgenspitze weist die QSV B auf, die Abendspitze die QSV D.

Variante	Knotenpunktform	QSV MSP	QSV ASP
2	LSA (optimiert) - Mischfahrsteifen	В	D

Tabelle 4: Übersicht QSV LSA mit Mischfahrstreifen

Die Ergebnisse der Leistungsfähigkeitsberechnung sind im Anhang in Kapitel 6.3 enthalten.

4.3 Ausgestaltung Knoten

Aus den Berechnungen der HBS-Nachweise ergeben sich ebenfalls die Rückstaulängen der einzelnen Ströme. Diese sind in Abbildung 12 für die Variante 2 mit der Lichtsignalanlage aufgeführt. Die größte Rückstaulänge in der Morgenspitze tritt bei dem Rechtsabbieger aus Norden von der L 213 auf das Gelände des Uniklinikums mit einer Rückstaulänge von 147 m auf. In der Abendspitze hat der Linksabbieger aus dem Gelände des Uniklinikums auf die L 213 mit einer Länge von 161 m die größte Rückstaulänge.

Die Rückstaulängen bei der Lösung mit dem Mischfahrstreifen sind in Abbildung 13 dargestellt. Die Rückstaulänge auf der neuen Zu- bzw. Abfahrt nimmt in der Abendspitze um ca. 50m gegenüber der Ausgangsvariante zu. Sie beträgt nun 208m. Änderungen der Aufstelllängen in der südlichen

Zufahrt zum Knoten in der Abendspitze sind auf Anpassungen im Lichtsignalprogramm zurückzuführen.

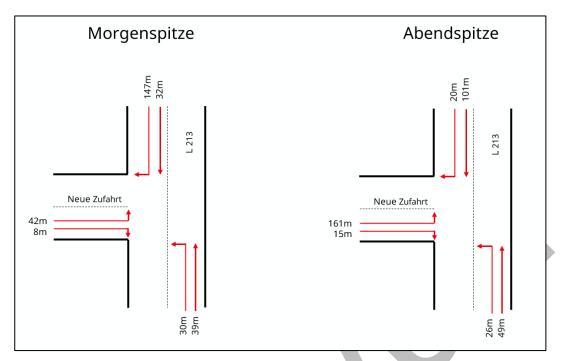


Abbildung 12: neuer Knoten L 213 – Aufstelllängen

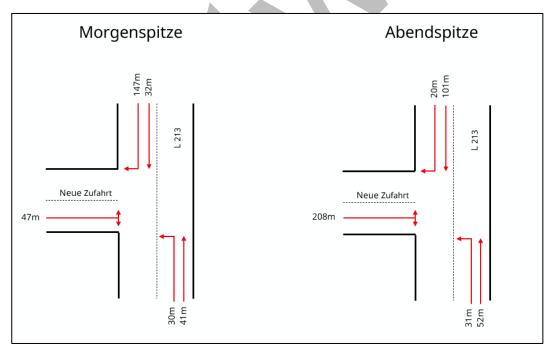


Abbildung 13: neuer Knoten L 213 - Aufstelllängen - Mischfahrstreifen aus dem Uniklinikum

5 Zusammenfassung

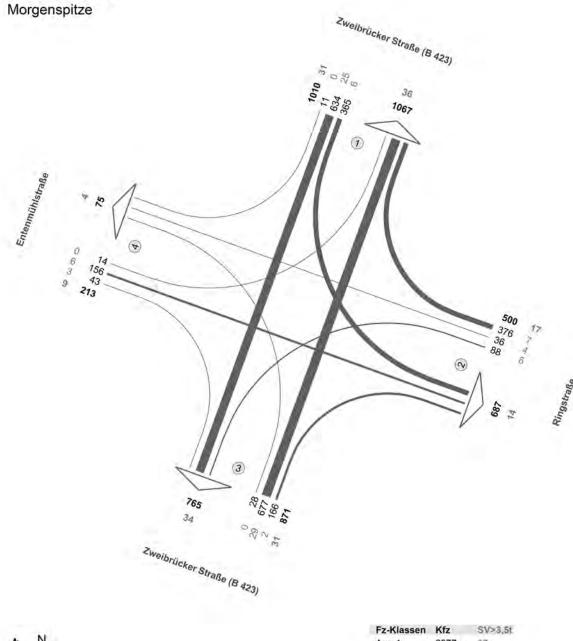
In einer umfangreichen Verkehrserhebung wurde das heutige Verkehrsaufkommen der Universitätsklinik Homburg ermittelt.

Die beiden Zu- bzw. Abfahrten Ringstraße und Cappelallee verzeichnen zusammen ein Verkehrsaufkommen von ca. 16.200 Kfz/24h, wobei davon ca. 62% auf die Ringstraße und ca. 38% auf die Cappelallee entfallen.

Für die zukünftige Erschließung ist vorgesehen, den Teil der klinischen Nutzung über eine neue Zufahrt im Bereich der L 213 zu erschließen, während die universitäre Nutzung über die Ringstraße u d die Cappelallee erschlossen wird.

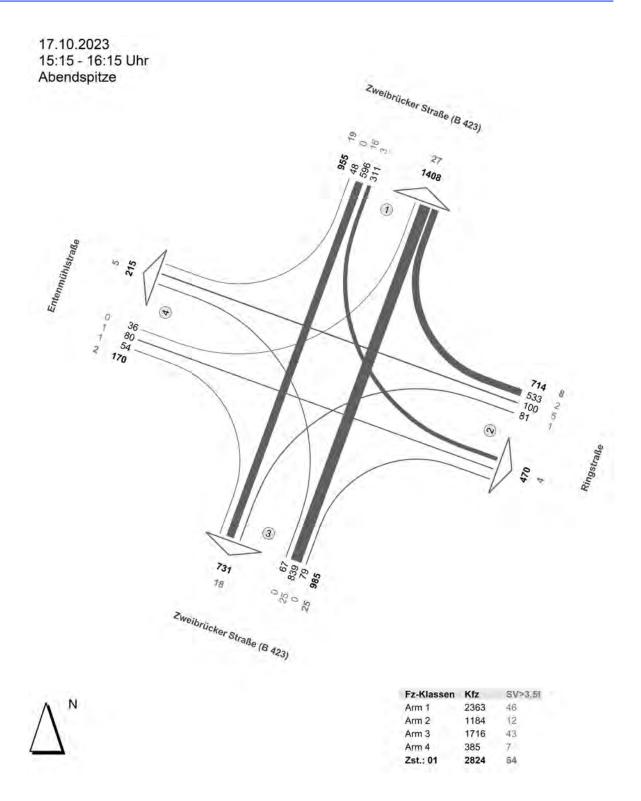
Für die neue Anbindung an die L 213 werden verschiedene Abschlussformen untersucht. Dabei stellt sich heraus, dass sowohl ein vorfahrtgeregelter Knotenpunkt als auch ein Kreisverkehr an dieser Stelle nicht leistungsfähig sind. Lediglich ein lichtsignalgesteuerter Knotenpunkt kann das zu erwartende Verkehrsaufkommen leistungsfähig bewältigen.

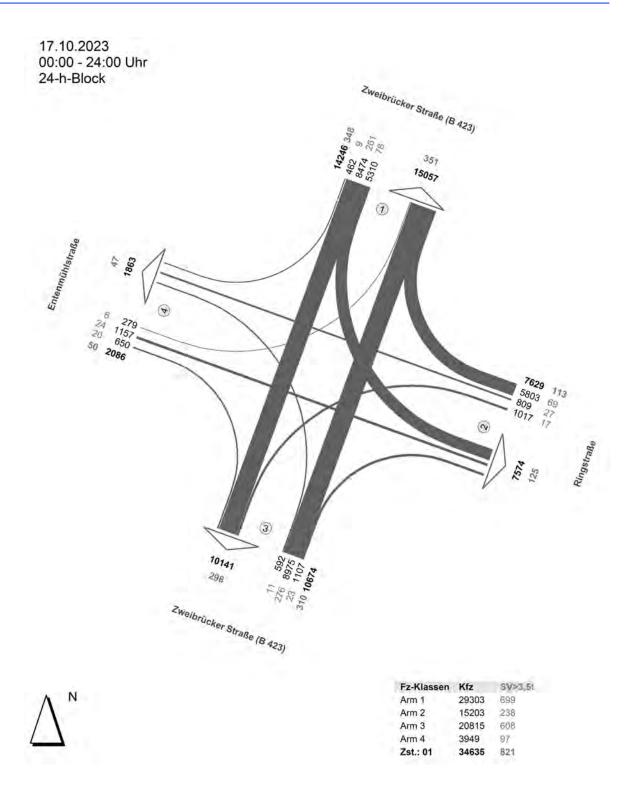
Da die ursprüngliche Knotenpunktgestaltung mit je einem Abbiegestreifen für Links- und Rechtsabbieger auf der neuen Zu- bzw. Abfahrt entwurfstechnisch nur schwer umsetzbar ist, ist in der neuen Zu- bzw. Abfahrt ein Mischfahrstreifen vorgesehen. Auch mit dieser Lösung ist der neue Knoten leistungsfähig.

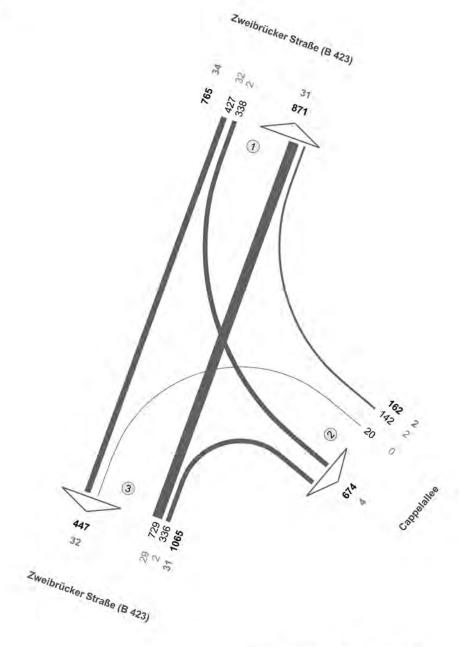


6 Anhang

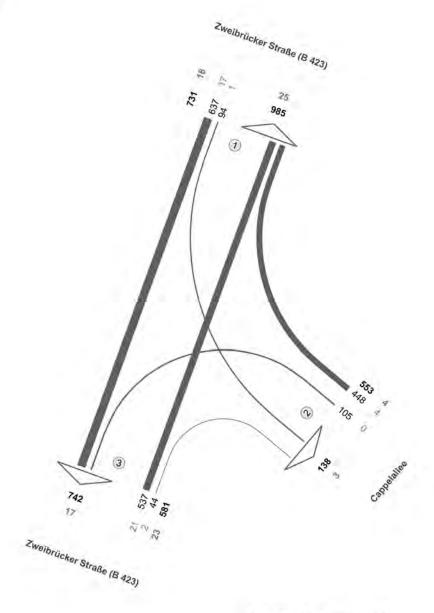
6.1 Verkehrserhebung


6.1.1 K1 – Zweibrücker Straße (B 423) / Ringstraße

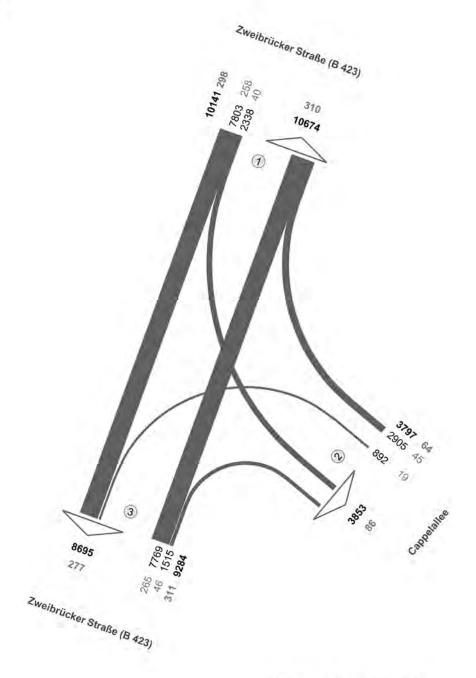

17.10.2023 07:15 - 08:15 Uhr Morgenspitze


Fz	-Klassen	Kfz	SV>3,5t
An	m 1	2077	67
An	m 2	1187	31
Ar	m 3	1636	65
An	m 4	288	13
Zs	t.: 01	2594	88

6.1.2 K2 – Zweibrücker Straße (B 423) / Cappelallee

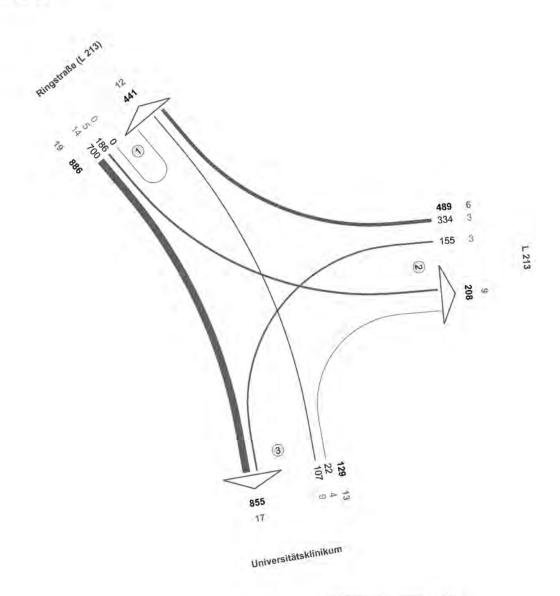

17.10.2023 07:15 - 08:15 Uhr Morgenspitze

Fz-Klassen	Kfz	SV>3,5t
Arm 1	1636	65
Arm 2	836	6
Arm 3	1512	63
Zst.: 02	1992	67


17.10.2023 15:15 - 16:15 Uhr Abendspitze

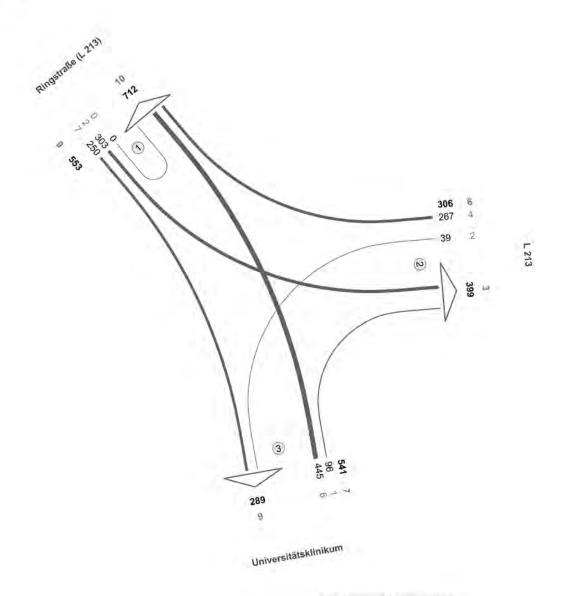
Fz-Klassen	Kfz	SV>3.61
Arm 1	1716	43
Arm 2	691	7
Arm 3	1323	40
Zst.: 02	1865	45

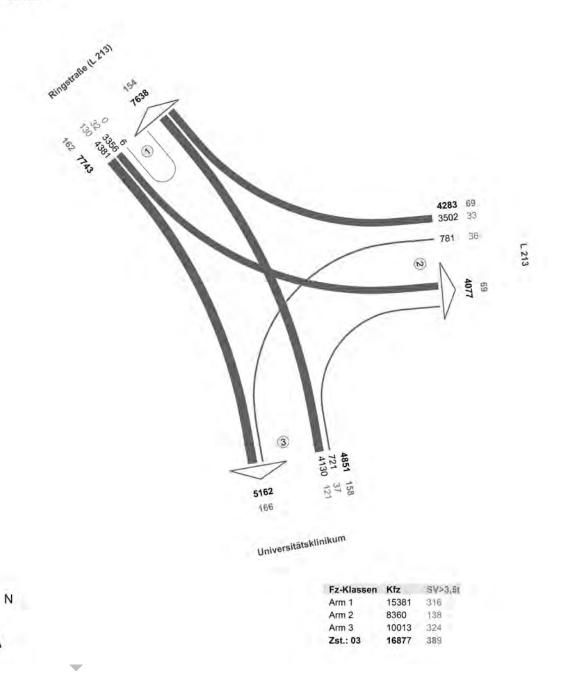
17.10.2023 00:00 - 24:00 Uhr 24-h-Block



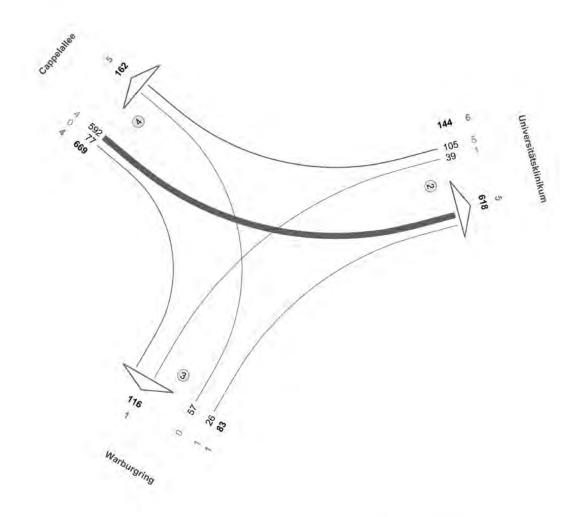
Fz-Klassen	Kfz	SV>3,5t
Arm 1	20815	608
Arm 2	7650	150
Arm 3	17979	588
Zst.: 02	23222	673

6.1.3 K3 - Ringstraße (L 213) / Kirrberger Straße


17.10.2023 07:15 - 08:15 Uhr Morgenspitze

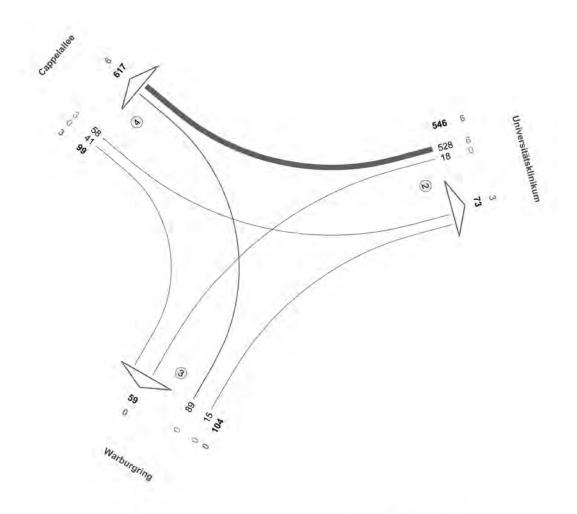

Fz-Klassen	Kfz	SV>3,51
Arm 1	1327	31
Arm 2	697	15
Arm 3	984	30
Zst.: 03	1504	38
Zst.: 03	1504	38

17.10.2023 14:45 - 15:45 Uhr Abendspitze


Fz-Klassen	Kfz	SV>3,5€
Arm 1	1265	19
Arm 2	705	9
Arm 3	830	16
Zst.: 03	1400	22

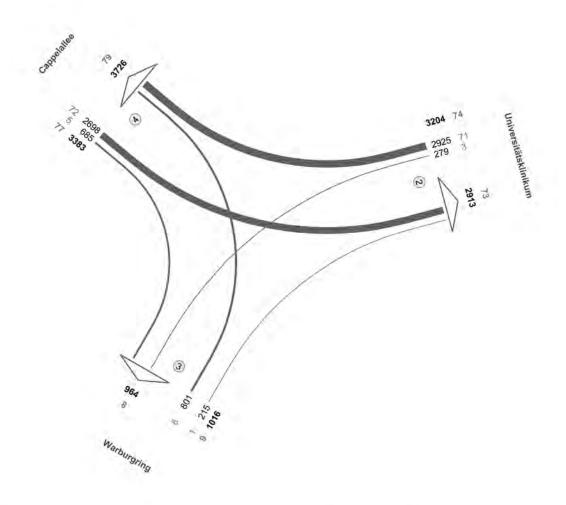
17.10.2023 00:00 - 24:00 Uhr 24-h-Block

6.1.4 K4 - Cappelallee / Warburgring


17.10.2023 07:15 - 08:15 Uhr Morgenspitze

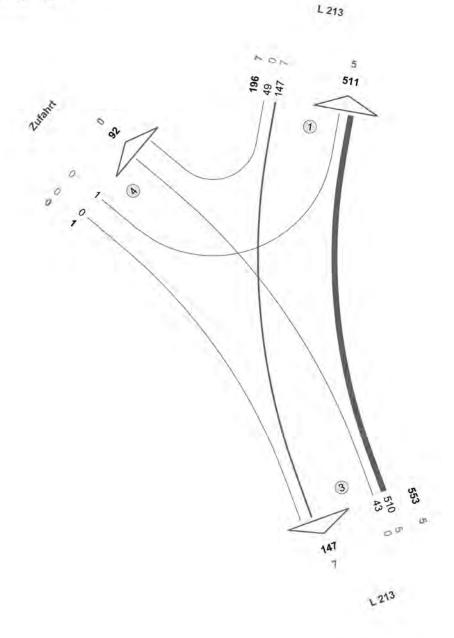
Fz-Klassen	Kfz	SV>3,51
Arm 2	762	11
Arm 3	199	2
Arm 4	831	9
Zst.: 04	896	11

17.10.2023 15:15 - 16:15 Uhr Abendspitze



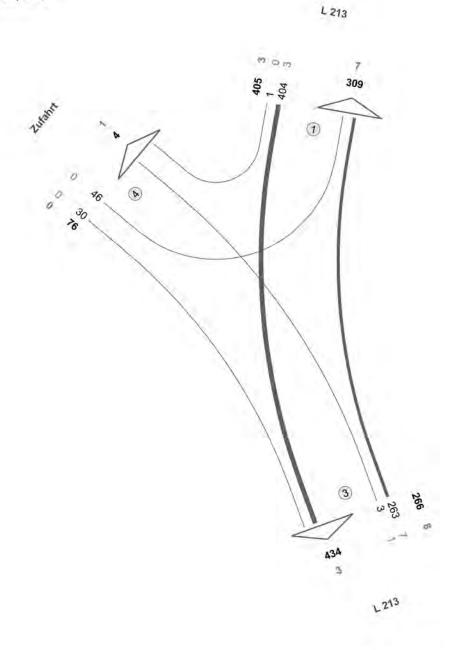
Fz-Klassen	Kfz	SV>3,51
Arm 2	619	9
Arm 3	163	0
Arm 4	716	9
Zst.: 04	749	9

17.10.2023 00:00 - 24:00 Uhr 24-h-Block

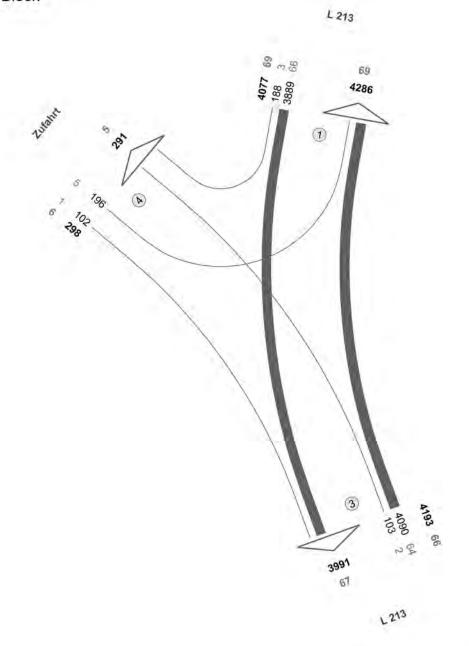


Fz-Klassen	Kfz	SV>3,5
Arm 2	6117	147
Arm 3	1980	17
Arm 4	7109	156
Zst.: 04	760 3	160

6.1.5 K5 - Kirrberger Straße (L 213) / Zufahrt Institute


17.10.2023 07:00 - 08:00 Uhr Morgenspitze

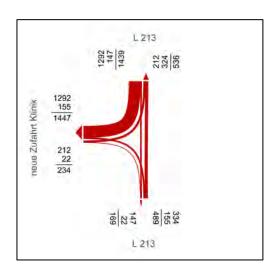
Fz-Klassen	Kfz	SV>3,51
Arm 1	707	12
Arm 3	700	12
Arm 4	93	0
Zst.: 05	750	12


17.10.2023 15:15 - 16:15 Uhr Abendspitze

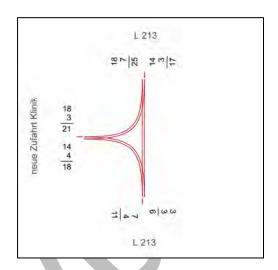
1	٨	N
	1	

Fz-Klassen	Kfz	SV>3,5L
Arm 1	714	10
Arm 3	700	11
Arm 4	80	9
Zst.: 05	747	11

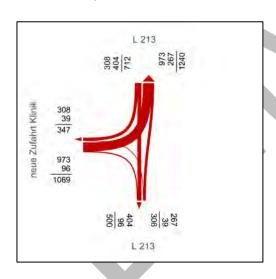
17.10.2023 00:00 - 24:00 Uhr 24-h-Block

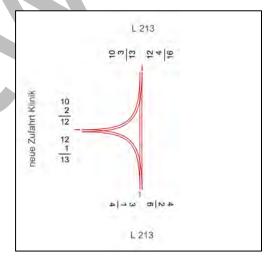


Fz-Klassen	Kfz	SV>3,5t
Arm 1	8363	138
Arm 3	8184	133
Arm 4	589	11
Zst.: 05	8568	141

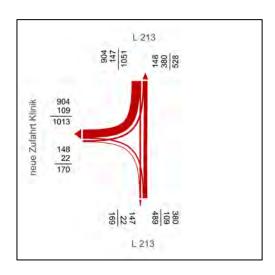

6.2 Verkehrsbelastungen (Spitzenstunden)

6.2.1 Neue Anbindung - Variante 1

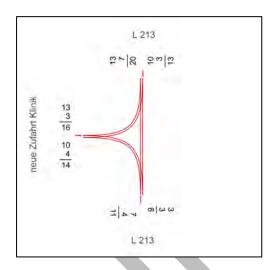

Morgendliche Spitzenstunde Kfz


Morgendliche Spitzenstunde SV

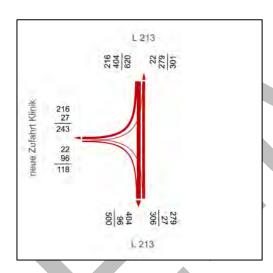
Abendliche Spitzenstunde Kfz

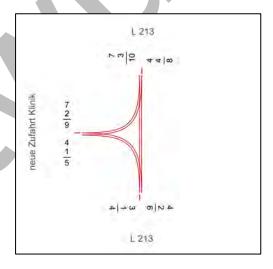


Abendliche Spitzenstunde SV

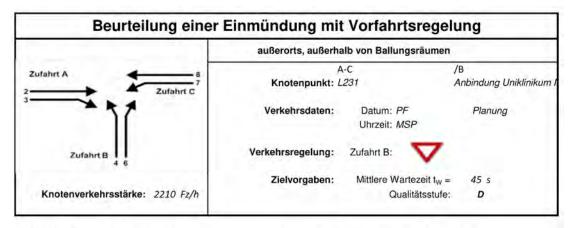


6.2.2 Neue Anbindung - Variante 2


Morgendliche Spitzenstunde Kfz

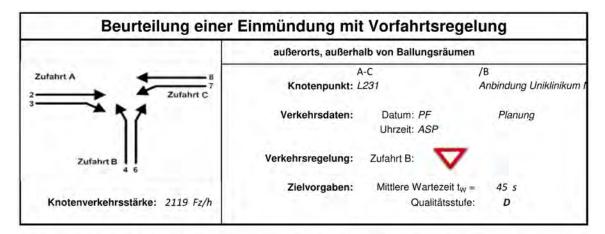

Morgendliche Spitzenstunde SV

Abendliche Spitzenstunde Kfz


Abendliche Spitzenstunde SV

6.3 Leistungsfähigkeitsnachweise

6.3.1 Neue Anbindung - L 213 – Variante 1 – Vorfahrtsgeregelter Knotenpunkt


Morgendliche Spitzenstunde

Aufschlüsselung nach Fahrzeugarten:

		Ka	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _i	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po
	2 (1)	(46)	1800	1,000	1800	0,088	***
Α	3 (1)	0	1600	1,000	1600	0,824	
	4 (3)	1303	135	1,000	12	19,788	444
В	6 (2)	809	319	1,000	319	0,088	***
	7 (2)	1464	213	1,000	213	0,741	0,088
C	8 (1)		1800	1,000	1800	0,188	-94

	01	F C	F 11	14	14 14 14 19 14 18 18 18 18 18 18 18 18 18 18 18 18 18	14	12 11 11 11	Tank .	0
-0.74		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitāts-	mittlere	Qualitäts
Zufahrt	Strom	Q _{Fz,i}	fpE.	C _{PE,i}	C,	grad xi	reserve R	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
٨	2	154	1,023	1800	1760	0,088	1606	0,0	Α
Α	3	1310	1,007	1600	1589	0,824	279	0,0	Α
	4	226	1,031	12	11	19,788	-215	34461,8	F
В	6	26	1,077	319	296	0,088	270	13,3	В
С	7	157	1,006	213	212	0,741	55	61,3	E
Ç	8	337	1,004	1800	1792	0,188	1455	0,0	Α
Α	2+3	1464	1,009	1619	1605	0,912	141	0,0	Α
В	4+6	252	1,036	13	13	19,788	-239	34395,7	F
С	7+8	494	1,005	544	541	0,912	47	58,7	E
			erreic	hbare Qualitäts	stufe QSV-				F

Aufschlüsselung nach Fahrzeugarten:

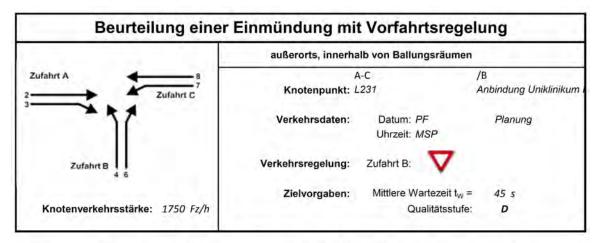
liegt vor, mit Differenzierung des Schwerverkehrs

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _r	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand p ₀
	2 (1)	100	1800	1,000	1800	0,227	1444
Α	3 (1)	0	1600	1,000	1600	0,202	***
-	4 (3)	878	264	1,000	240	4,131	797
В	6 (2)	566	470	1,000	470	0,207	(22)
	7 (2)	725	548	1,000	548	0,077	0,910
С	8 (1)		1800	1,000	1800	0,152	

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
Α	2	407	1,004	1800	1793	0,227	1386	0,0	Α
A	3	318	1,016	1600	1575	0,202	1257	0,0	Α
	4	985	1,006	240	238	4,131	-747	5671,4	F
В	6	97	1,005	470	468	0,207	371	9,7	Α
0	. 7	41	1,024	548	535	0,077	494	7,3	Α
C	8	271	1,007	1800	1787	0,152	1516	0,0	Α
Α	2+3	725	1,009	1706	1691	0,429	966	0,0	Α
В	4+6	1082	1,006	263	262	4,131	-820	5668,3	F
C	7+8	312	1,010	1800	1783	0,175	1471	2,4	Α
			erreic	hbare Qualitäts	stufe QSV _{EZ}	200			F

6.3.2 Neue Anbindung - L 213 – Variante 1 – LSA

Morgendliche Spitzenstunde


						Bewe			kt mit Lich Irsqualität			verkehr					
	Projekt:	Unikliniku	im			Dewe	itung der	VEINEI	ioquantai	in Kran	amzeug	yerkem					
		Homburg					_										
Va					_												
	otenpunkt;																
		MSP															
Е		ViWo															
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	Q _{Kfz}	qs	t _e	t _F	C	X	fA	N _{GE}	N _{MS}	S	N _{MS.S}	fsv	Ls	tw	QSV	Bemerkungen
Nr.	100	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	{11}	{12}	(13)	{14}	(15)	(16)	(17)
_	7.13	121	101	[4]	[3]	10)	10	101	Phase		1111	114	1101	1141	1101	[10]	Titl
1 K	2	154	1921	49		1067	0.144	0,556		1,954		3,927	1,041	25	10,0	A	
					OF.												
2 K		337	1984	49	65	1455	0,232	0,733	0,171	2,877		5,270	1,008	32	4,3	A	
3 K	.3	1310	1838	49	67	1389	0,943	0,756	23,946	51,824		61,981	1,012	376	71,4	E	
4							_										
5																-	
6																	
7																	
									Phase 2								
8 K		226	1762	_11_		235	0,962	0,133		13,916		19,179	1,056	121	165,9	E	
9 K	6	26	1634	-11	27	508	0,051	0,311	0,030	0,485		1,467	1,138	10	21,9	В	
10																	
11			1 - 1						1	1			- 1			1 10	
12		F - H														11 11	
13																	
14.																	
									Phase 3	3							
15 K	7 1	158	1829	9		203	0,777	0,111	2,321	6,164		9,666	1,017	59	80,0	E	
16		100	1023	-		200	· Varia	0,111	2,021	0,104		5,000	1,017	55	30,0	-	
17				_			_	_						_			
18							\rightarrow	_		-		-	_	_	-	-	
											_						
19							_		District		_		-				
20 T	_		-	-			-	_	Phase	4			_	_	_		
20																	
21																	
22			1										- 4				
23																	
24										_			- (
									Phase !	5							
25			1														
26		-				1		-		- 1				-			
27																	
28																	
29																	
-01			_			_			Phase 6	6	_					_	
30		1	T			1			1	1		1	Т	1	- 1	1	
31			-						-				-				
32																	
33		-										-		_	-	-	
			-				_										
34		7	-							-24			- 3				
				-	_				Knotenpu	nkt				-			
	Summe:	2211	- 0			4858											
	Mittelwert:		1				0,759	-						100	66,6	1	
	Maximum:						0,962							376	165,9	E	

						Bewe	ertung de	r Verkeh	rsqualită	htsignala im Kraft	fahrzeu	gverkehr					
P	rojekt:	Unikliniku	m														
		Homburg					-										
Knoten	punkt:	KP 6					- 3										
Zeltabs		ASP															
Bear	rbeiter:	ViWa				0											
	.t _{i,i} =	90	[s]	1, =	1,100	(-)	- T =	1.0	DHI .								
lfd. B	ez.	q _{i0z}	q ₅	le le	f _F	C	x	f _A	N _{GE}	N _{MS}	S	N _{MS/S}	fsv	Ls	t _w	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[5]	[s]	[Ktz/h]	[-]	[-]	[Kfz]	[Ktz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	(1)	(2)	(3)	{4}	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(1.5)	(16)	{1.7}
_		1-1	177.1		(-)	1-1-1		111	Phase		-	1	1.01				- 1/2/
1 K2		407	1987	18		419	0,970	0,211	13,137	23,232		30,032	1,007	181	148.0	E	
2 K8		.271	1974	18	30	680	0,399	0,344	0,389	5,537		8,857	1.013	.54	24,5	В	
3 K3		318	1809	18	71	1447	0,220	0,800	0,159	2,088		4,127	1,028	25	2,6	A	
4	- 11					-				-							
5																	
6																	
7	- 1																
a disco			22.27	- 42 - 1			1.722		Phase			l we seed					
8 K4		985	1840	46		961	1.025	0,522	39,492			75,414	1.011	457	169,4	F	
9 K6		97	1843	46	58	1208	0,080	0,656	0,048	0,930		2,291	1,009	14	5.8	A	
10																	
11							-			-		-	-	-			
13													_		_		
14							-						_	-			
. 4. 1			-				- +		Phase	3		-	1		_		
15 K7		41	1782	5		119	0,345	0,067	0,302			2,878	1,044	18	49.3	C	
16			1,702			110	0,010	0,007	0,002	1,20		2,570	1,013	10	70.0	-	
17									-								
18							-	-									
19									1								
A.V.									Phase	4							
20												-		-			
21																1	
22																	
23	- 1																
24				-													
- T				_					Phase	5					_		
25	-			_				-	1		_	_	_		_		
26	-											-	-			_	
27	_			_			_			_		-	-		-		
29	_			_	_		_	_			_		\rightarrow	_	_	_	
29		_		_			_		Phase	e e	_			_		_	
30	1	- 1							Filase	-			1	- 1			
31													_				
32															-		1
33	- 1																
34							-			_							
									Knotenpu	nkt							
	umme:	2119	-			4835	100	-								-	
S	elwert:						0.757								111,9		
gew. Mitt	dmum:						1,025	1	1 - 11					457	169,4	F	

6.3.3 Neue Anbindung - L 213 – Variante 2 – Vorfahrtsgeregelter Knotenpunkt

Morgendliche Spitzenstunde

Aufschlüsselung nach Fahrzeugarten:

liegt vor, mit Differenzierung des Schwerverkehrs

		Kap	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand p ₀
	2 (1)	***	1800	1,000	1800	0,088	
Α	3 (1)	0	1600	1,000	1600	0,577	
	4 (3)	1108	235	1,000	149	1,092	
В	6 (2)	613	500	1,000	500	0,056	
_	7 (2)	1071	397	1,000	397	0,286	0,636
С	8 (1)	1-32	1800	1,000	1800	0,214	345

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
Α	2	154	1,023	1800	1760	0,088	1606	0,0	Α
A	3	917	1,007	1600	1589	0,577	672	0,0	Α
	4	158	1,032	149	145	1,092	-13	344,2	F
В	6	26	1,077	500	465	0,056	439	8,2	Α
С	7	112	1,013	397	392	0,286	280	12,9	В
C	8	383	1,004	1800	1793	0,214	1410	0,0	Α
Α	2+3	1071	1,009	1626	1611	0,665	540	0,0	Α
В	4+6	184	1,038	175	168	1,092	-16	325,6	F
С	7+8	495	1,006	1369	1361	0,364	866	4,2	Α
			erreic	hbare Qualitäts	stufe QSV-				F

Aufschlüsselung nach Fahrzeugarten:

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _i	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po
	2 (1)		1800	1,000	1800	0,227	777
Α	3 (1)	0	1600	1,000	1600	0,142	4
	4 (3)	831	284	1,000	268	2,587	
В	6 (2)	519	507	1,000	507	0,192	
0	7 (2)	630	619	1,000	619	0,048	0,942
С	8 (1)		1800	1,000	1800	0,158	

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
Α	2	407	1,004	1800	1793	0,227	1386	0,0	Α
A	3	223	1,016	1600	1575	0,142	1352	0,0	Α
n	4	689	1,006	268	266	2,587	-423	2891,4	F
В	6	97	1,005	507	505	0,192	408	8,8	Α
С	7	29	1,034	619	598	0,048	569	6,3	Α
C	8	283	1,007	1800	1787	0,158	1504	0,0	Α
Α	2+3	630	1,008	1723	1710	0,369	1080	0,0	Α
В	4+6	786	1,006	306	304	2,587	-482	2887,1	F
C	7+8	312	1,010	1800	1783	0,175	1471	2,4	A
			erreic	hbare Qualitäts	stufe QSV _{E7}	nee			F

6.3.4 Neue Anbindung - L 213 3 – Variante 2 – LSA

Morgendliche Spitzenstunde

						Rowe			kt mit Lich rsqualität			vorkahr					
	Projekt.	Unikliniku	m			bewe	rung de	verken	rsquantat	in Kran	anrzeug	Jverkent					
		Homburg															
Vo	otenpunkt:																
	itabschnitt:																
	Bearbeiter:				_		_										
-			(s)		4 400	Ir v. T	-	4.0	(h)								
	t _U =			I _{in} =	1,100	[-]	T =			-		1					
lfd.	Bez.	q _{Ktz}	qs	t _F	t _F	C	X	f _A	Nge	N _{MS}	S	N _{MS,S}	fsv	Ls	- tw	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[5]	[s]	[Kfz/h]	[-]	H	[Kfz]	[Kfz]	[%]	[Kfz]	[·]	[m]	[s]	[-]	
	{1}	{2}	(3)	{4}	{5}	(6)	{7}	(8)	{9}	{10}	(11)	{12}	{13}	{14}	(15)	(16)	{17}
_									Phase								
1 K	(2	154	1921	33		726	0,212	0,378	0,152	2,756		5,099	1,041	32	19,7	A	
	(8	337	1984	33	58	1301	0,259	0,656	0,199	3,695		6,407	1,008	39	7,0	Α	
	(3	917	1837	33	58	1204	0,761	0,656	2,471	18,238		24,263	1,013	147	18,0	A	
4																	
5							-										
6																	
7																	
									Phase 2					1,14			
	(4	158	1760	18	10	372	0,425	0,211	0,436	3,859		6,631	1,057	-42	35,0	В	
	(6	26	1634	18	43	799	0,033	0,489	0,019	0,356		1,198	1,138	8	12,0	A	
10													-				
11																	
12																	
13							_										
14																	
- I						1 52.0			Phase 3							- 1	
	(7	112	1817	18		384	0,292	0.211	0,236	2,590		4,861	1.024	30	32,1	В	
16																	
17														-			
18	_						_	_			_		_	-	-		
19							-										
00.1	_				_				Phase 4	4		_	-		_	_	
20		-				-											
21				-		-	_							-			
22														-			
23				-									_				
24									Phase 5								
or T								_	Phase	-							
25	_						-					-					
26							_		-			-					
27	-						_	_						-			
28	-	-		-										-	-		
29									Phase 6								
20 T	_	_				1 1	- 1		Phase	-		1		-	-	-	
30														_			
31							_							-			
32						-	_				-		-				
33							\rightarrow						_	-			
34									160.510.0	664							
	Commercial	4701			_	1705		-	Knotenpu	nkt							
degrees	Summe:	1704				4785	0.506						-		- 10		
	Mittelwert: Maximum:						0,539	-						147	18,4 35.0	В	

					Bewe			kt mit Lic rsqualitä			verkehr					
Proint	t: Uniklinik	ımı			Dew	g de	. remei	oquanta	an Aight		Joineill					
Stac	t: Homburg	1														
Knotenpuni		-														
Zeitabschni																
Bearbeite																
	_	I		1 100	Ira I	7	1.0	In-1								
tu		[s]	f _{in} =		[-]	T =	1,0	[h]								
d. Bez.	q _{Kfz}	qs	1¢	t _F	C	X.	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _w	QSV	Bemerkunge
dr.	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	EJ.	[m]	[s]	[:]	
[1]	{2}	{3}	{4}	{5}	(6)	{7}	(8)	(9)	{10}	{11}	(12)	{13}	{14}	(15)	[16]	{17}
- V								Phase							100	
1 K2	407	1987	23		530	0,768	0,267				16,711	1,007	101	47,2	C	
2 K8	283	1975	23	38	856	0,331	0,433	0,285	4,965		8,109	1,013	49	18,1	Α	
3 K3	223	1809	23	69	1407	0,158	0,778	0,106	1,519		3,257	1,028	20	2,8	Α	
4					1											
5																
6																
7			_		1= =											
								Phase								
8 K4	689		39		818	0,842	0,444	4,901			26,533	1,010	161	43,8	С	=
9 K6	97	1843	39	54	1126	0,086	0,611	0,052	1,048		2,492	1,009	15	7,4	Α	
10	9		1													
11																
12																
13																
14							-		-					1		
-5-								Phase:								
5 K7	74	1816	8		182	0,407	0,100	0,401	2,136		4,198	1,024	26	45,9	C	
16			-													
7					-											
18																
19	1				-											
								Phase	4							
20		7 f			1	-			-					- T		
21									-							
22									-							
23			-													
24																
								Phase	5							
25					1											
26																
27			1		1											
28																
29						1										
								Phase	6							
30		2 1							-							
31					(-							
32			1		1		-							7		
33	1				1			1						1 == 10		
34									-							
								Knotenpu	inkt							
Summ					4919									H		
						0,598							-71	33,4		
gew. Mittelwe Maximur						0,842							161	47,2	C	

6.3.5 Neue Anbindung - L 213 3 – Variante 2 – LSA – Mischfahrstreifen aus dem Uniklinikum

Morgendliche Spitzenstunde

									kt mit Lici								
						Bewe	ertung de	r Verkeh	rsqualität	im Kraft	fahrzeu	gverkehr					
		Unikliniku															
12:		Homburg					1										
	enpunkt:																
	bschnitt;																
Be	arbeiter:		-														
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
	Bez	9 _{KfZ}	q _s	1 _F	t _E	C	x	f _A	NGE	N _{MS}	S	N _{MS,S}	fsv	L _S	t _w	QSV	Bemerkunger
Nr.	-	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	(m)	[5]	[-]	
	{1}	(2)	{3}	(4)	{5}	(6)	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	(16)	{17}
								- 11	Phase :	1				-			-
1 K2		154	1921	33		726	0,212	0,378	0,152	2,756		5,099	1,041	32	19,7	A	
2 K8		337	1984	33	56	1257	0.268	0,633	0,209	3,930		6,727	1,008	.41	7,9	A	
3 K3		917	1837	33	58	1204	0,761	0,656		18,238		24,263	1,013	147	18,0	A	
4																	
5			- 1														
6				-													
7																	
									Phase 2	2							
8 K4	6	184	1741	18	20	406	0,453	0,233	0,492	4,436		7,407	1,068	47	33,9	В	
9																	
10																	
11																	
12									11								
13																	
14		_	7 1	7			1 18							0.5			
									Phase :	3							
15 K7		112	1817	18	16	343	0,326	0,189	0,279	2,699		5,017	1,024	31	34,5	В	
16																	
17																	
18																	
19																	
									Phase 4	4							
20			-			1000	1 - 1										
21			-											-			
22							-										
23		1															
24																	
25.1								_	Phase !	5							
25																	-
26																	
27																	
28																	
29								1									
22.1									Phase (6							
30																	
31																	
32		- 1								4							
33																	
34			-	-		1		1		1	-	-					
					_	1 1222.28			Knotenpu	inkt							
	Summe:	1704				3936									-	4	
	ittelwert:						0,552							- 7	19,0		
Ma	aximum:						0.761							147	34,5	В	

_									kt mit Lic								
	Desiglat	Unikliniku	100			Bewe	ertung de	verkel	nrsqualität	im Kraft	ranrzeug	yerkenr					
_		Homburg					_										
L	(notenpunkt:																
	eitabschnitt:						- 64										
- 4	Bearbeiter:	ViWo					-										
_	t _o =		tal I	100	1 100	[-]	T.=	10	[h]	_							
15.4		_	[s]	f _{in} =	_		_		_							Towns I	
lfd. Nr.	Bez.	9Kiz	q _S	t _F	t _F	C	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	1sv	Ls	-t _W	QSV	Bemerkunger
IAI-		[Kfz/h]	[Kfz/h]	[s]	[S]	[Kfz/h]	[-]	(-)	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[5]	[-]	
	{1}	{2}	{3}	(4)	{5}	(6)	{7}	(8)	(9)	{10}	{11}	(12)	{13}	{14}	{15}	{16}	{17}
_	Toric .	1	1000		_				Phase				75.4		1301		
1	K2	407	1987	23		530	0,768	0,267		11,854		16,711	1,007	101	47,2	С	
2	K8	283	1975	23	35	790	0,358	0,400		5,279		8,521	1,013	52	20,4	В	
3	K3	223	1809	23	69	1407	0,158	0,778	0,106	1,519		3,257	1,028	20	2,8	Α	
4								-									
5			\rightarrow				-							$\overline{}$	_		
6	-		-		_		-				-					_	
7					-				Phase :	2							
0	K4_6	785	1841	39	42	880	0,892	0,478			_	34.291	1,009	208	58,6	D	
9	1/4_D	765	1041	29	42	000	0,092	0,478	9,097	20,304	-	34,281	1,009	208	20,0	U	
10														_		-	
11	_	1	_			1	-		-		_			-			
12		-			_		-							-	- 1	_	
13							-							-	-		
14					-												
14		_	_						Phase :	3							
15	K7	74	1816	8	5	121	0,611	0,067		2,748		5,086	1.024	31	69,0	D	
16			10.0			12.1		5,007	10,0.0	20,710		3,000	1,52	-	40,0		
17																	
18																	
19									11.77	-				-			
									Phase	4				- 4			
20																- 1	
21													-				
22		11 = 1					1 1		1 11						1		
23																	
24																	
									Phase !	5							
25														- 1			
26					_										1		
27									i - j						1		
28			= 0														
29										11							_
									Phase 6	6							
30									11						1		
31																	
32																	
33							1										
34										1	-						
	-								Knotenpu	inkt							
_	Summe:	1772				3728									-	1	
gev	v. Mittelwert:						0,674								43,3		
	Maximum:		1				0,892							208	69,0	D	

6.3.6 Neue Anbindung - L 213 – Variante 2 – Kreisverkehr

Morgendliche Spitzenstunde

Aufschlüsselung nach Fahrzeugarten:

	Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,KI} [Pkw-E/h]	Grundkapazität G _{PE,I} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{f,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	
1	1071	1,009	1081	196	969	1,000	969	
2	184	1,038	191	313	859	1,000	859	
3	495	1,006	498	191	973	1,000	973	

	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts
Zufahrt	C	Ri	t _{w.i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	960	-111	243,8	F
2	827	643	5,6	A
3	967	472	7,6	Α
			erreichbare Qualitätsstufe QSV _{qes}	F

Beurteilung der Ausfahrten							
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung					
1	548	nicht ausgelastet					
2	1037	nicht ausgelastet					
3	186	nicht ausgelastet					

Aufschlüsselung nach Fahrzeugarten:

Kapazitäten der Zufahrten								
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE-Zi} (-)	Verkehrsstärke in der Zufahrt GPE,Zi [Pkw-E/h]	Verkehrsstärke im Kreis GPE,KI [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{tij} [-]	Kapazität C _{PE.} [Pkw-E/h]	
1	630	1,008	635	30	1210	1,000	1210	
2	786	1,006	791	409	880	1,000	880	
3	312	1,010	315	693	651	1,000	651	

Zufahrt	Kapazītāt C _i [Fz/h]	Kapazitātsreserve R, [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts- stufe QSV
1	1200	570	6,3	Α
2	875	89	35,3	D
3	645	333	10,8	В
		1	erreichbare Qualitätsstufe QSV _{qes}	D

Beurteilung der Ausfahrten							
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung					
1	978	nicht ausgelastet					
2	257	nicht ausgelastet					
-3	506	nicht ausgelastet					